مشروع البحث:
SEZGĠSEL OPTĠMĠZAS ON YONTEMĠ ĠLE ĠNSAN RETĠNA G RÜNTÜLERĠNDE OPTĠK DĠSK SEGMENTAS ONU VE DERĠN ĞRENME ĠLE HASTALIK TEġHĠSĠ

dc.contributor.advisorDR. ABDULKADĠR KARACI
dc.date.accessioned2025-08-19T07:57:46Z
dc.date.available2025-08-19T07:57:46Z
dc.descriptionComprehensive experiments are conducted to identify optimal hyperparameters, significantly enhancing the accuracy of Glokom detection. GWO achieved an average sensitivity of 96.04%, a specificity of 99.58%, an accuracy of 99.39%, a DICE coefficient of 94.15%, and a Jaccard index of 90.4% on the Drishti-GS1 dataset for segmentation. For classification, the Swin Transformer model achieved high test accuracy of 100% for hold-out validation and 88.18% for 3-fold cross-validation on the Drishti-GS1 dataset. Additionally, on the ORIGA dataset, the Swin Transformer model obtained remarkable results with 96.15% test accuracy for hold-out validation and InceptionV3 achieved 93.84% test accuracy for 5-fold cross-validation. Compared to previous studies, the proposed models in this work have demonstrated superior performance.
dc.description.abstractGlaucoma is a prevalent eye disease characterized by damage to the optic nerve, often resulting in irreversible vision loss. Its insidious nature, particularly in early stages with minimal symptoms, complicates timely diagnosis and intervention. This study addresses the critical challenge of localizing and segmenting the optic disc in retinal images, along with classifying Glokom's presence to enhance diagnostic accuracy. This study introduces a novel approach for optic disc segmentation in human retina images using Grey Wolf Optimization (GWO), a nature-inspired meta-heuristic algorithm that simulates the social behavior of grey wolves, marking its first application in this context.
dc.identifier665
dc.identifier.urihttps://dspace.academy.edu.ly/handle/123456789/1719
dc.subjectOĞRENME ĠLE HASTALIK TEġHĠSĠ”
dc.titleSEZGĠSEL OPTĠMĠZAS ON YONTEMĠ ĠLE ĠNSAN RETĠNA G RÜNTÜLERĠNDE OPTĠK DĠSK SEGMENTAS ONU VE DERĠN ĞRENME ĠLE HASTALIK TEġHĠSĠ
dspace.entity.typeProject
project.endDate2025
project.funder.nameهندسة المواد
project.investigatorحميدة علي المشرقي
project.startDate2024
relation.isOrgUnitOfProjectd08f9c20-9b29-40ba-986c-2744c5edb342
relation.isOrgUnitOfProject.latestForDiscoveryd08f9c20-9b29-40ba-986c-2744c5edb342
الملفات
الحزمة الأصلية
يظهر اﻵن 1 - 1 من 1
لا توجد صورة مصغرة متاحة
اﻻسم:
Hamida-Thesis_TR_Final_17.01.2025.pdf
الحجم:
3.46 MB
التنسيق:
Adobe Portable Document Format
حزمة الترخيص
يظهر اﻵن 1 - 1 من 1
لا توجد صورة مصغرة متاحة
اﻻسم:
license.txt
الحجم:
1.71 KB
التنسيق:
Item-specific license agreed to upon submission
الوصف: