مشروع البحث:
HANKEL INTEGRAL TRANsFoRMS and Its APPLICATIOns in PARTIAL DIFRENTIAL EQUATIoNS (WAVE, PoTENTIAL and HEAT EQuATIONS

تحميل...
thumbnail.project.alt
المساهمين
الممولين
رقم التعريف
7081
الباحث
تهاني عبد الحي عبد الرزاق
المشرفين
منشورات
وحدات تنظيمية
وحدة تنظيمية
الوصف
This thesis is divided into 4 sections: Chapter 1 describes Fourier Series, Fourier Integral Representations, Fourier Transforms and Double Fourier Transforms. Chapter 2 shows the Bessel functions of the first kind, some Recurrence Relation for Bessel functions. Chapter 3 introduces the Hankel Integral Transforms definition, and it shows how to get a Hankel Transforms from a Double Fourier Transforms by transforming coordinates, with examples. Chapter 4 presents some applications where Hankel Transforms and inverse Hankel Transforms are used to solve partial differential equations. At the end we give some appendices that we needed in this research such as: Method of Frobenius - the Gamma Function - Taylor's expansion - change of Variables in Multiple Integrals - the Heaviside function - Dirac Delta function-and the Laplace transform integral.
الكلمات الدالة
HANKEL INTEGRAL TRANsFoRMS and Its APPLICATIOns in PARTIAL DIFRENTIAL EQUATIoNS (WAVE, PoTENTIAL and HEAT EQuATIONS