مشروع البحث:
EXTRACTING BUSINESS PERFRMANCE SIGNALS FROM TWITTER NEWS

dc.contributor.advisor-WATT UNIVERSITY
dc.date.accessioned2024-12-09T11:41:15Z
dc.date.available2024-12-09T11:41:15Z
dc.descriptionAdditionally, we propose n-grams made from non-contiguous words as a novel feature to enhance performance in this context. Experiments involving a range of feature selection methods show that these new features provide valuable benefits in comparison with standard n-gram features
dc.description.abstractSocial media and social networks underpin a revolution in communication between people, with the particular feature that much of that communication is open to all. This provides a massive pool of data that can be exploited by researchers for a wide variety of different applications. Data from Twitter is of particular interest in this sense, given its large global usage levels, and the availability of APIs and other tools that enable easy access to the publicly available stream of tweets. Owing to the wide public penetration of Twitter, many businesses make use of it to share their latest news, effectively using Twitter as a gateway to connect to end-users, consumers and/or investors.
dc.identifier115
dc.identifier.urihttps://dspace.academy.edu.ly/handle/123456789/675
dc.subjectEXTRACTING BUSINESS PERFRMANCE SIGNALS FROM TWITTER NEWS
dc.titleEXTRACTING BUSINESS PERFRMANCE SIGNALS FROM TWITTER NEWS
dspace.entity.typeProject
project.endDate2021
project.funder.nameالطب الحيوي
project.investigatorابرهيم دنقو
project.startDate2020
الملفات
الحزمة الأصلية
يظهر اﻵن 1 - 1 من 1
لا توجد صورة مصغرة متاحة
اﻻسم:
DongoI_1221_macsSS.pdf
الحجم:
1.66 MB
التنسيق:
Adobe Portable Document Format
حزمة الترخيص
يظهر اﻵن 1 - 1 من 1
لا توجد صورة مصغرة متاحة
اﻻسم:
license.txt
الحجم:
1.71 KB
التنسيق:
Item-specific license agreed to upon submission
الوصف: